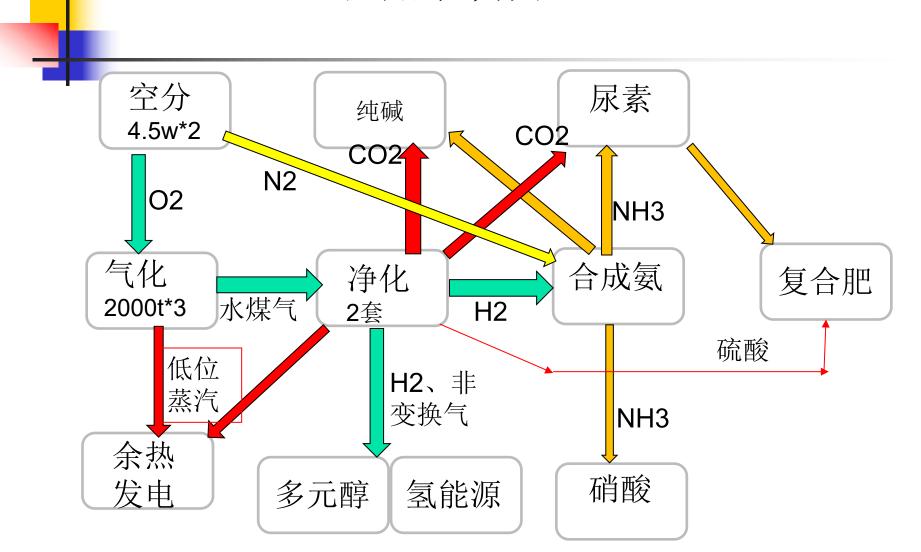


汇报人: 李福文

2025年11月18日

主要内容

- 一、公司简介
- 二、气化应用情况
- 三、多喷嘴气化运行管理
- 四、展望未来


一、公司简介

- 江苏华昌化工股份有限公司(简称江苏华昌化工)位于苏州市张家港保税区扬子江国际化工园。以煤化工为依托主要产品合成氨。
- ●公司建成于1970年,
- ●2003年公司积极响应张家港市"退二进三"的要求,公司整体搬 迁至工业园。
- 2004年变更为华昌化工股份有限公司,
- 2008年在深交所成功上市,
- 2012年开始转型升级。产品从合成氨、纯碱,逐渐延伸到农用 化工、基础化工、精细化工、石油化工、氢能源等产品。
- 主要产品: 合成氨、纯碱、氯化铵、尿素、复合肥、甲醇、精细化工、多元醇、新戊二醇、氢能源等。

公司流程简图

二、气化应用情况

2013年公司通过了"双结构调整项目"即原料结构调整、产品涉足精细化工。原料调整上选择使用了世界先进的洁净煤气化技术(多喷嘴水煤浆气化),替代固定层气化工艺,解决固定层气化生产中的"三难"问题。煤化工下游产品也逐渐向有机化工、绿色能源方向发展。

二、气化应用情况

项目建设分两期实施(采用用一退一的方式):

- 一期设计两台(投煤1800t/d、操作压力6.5MPa)多喷嘴水煤浆气化炉(配套4.5万Nm3/h的空分、煤储运、制浆、绝热变换、低温甲醇洗、低温液氮洗、液态硫回收、污水处理、多元醇项目)。
- 二期项目新增一台(1800t/d、压力6.5MPa)多喷嘴气化炉,配套4.5万Nm3/h的空分、煤储运、耐硫变换、低温甲醇洗、低温液氮洗、硫回收、污水处理、多元醇项目。气化炉形成两开一备的运行模式。同时产能增加一倍。
- •一期项目2015年3月12日一次投料成功,13日生产出合格的产品并转入正常运行。
- •二期项目于2019年1月二期装置一次投料成功并转入正常运行。原 UGI气化装置及配套净化全部退出运行。

易磨损部分处理

1、输送含固、颗粒液体离心泵使用变频电机调节流量

目的: 取消仪表调节阀,降低泵转速减少电耗,减少泵叶轮

及泵壳磨损。(渣池泵、底污泵、压滤机给料泵)

运行效果: 装置运行以来更换一次泵壳及叶轮。

2、黑水易磨损部位采用耐磨件,或喷涂耐磨材料。

例:黑水角阀下盲端及管道。

——加强原料管理

确保气化炉稳定运行的基础——原料煤:

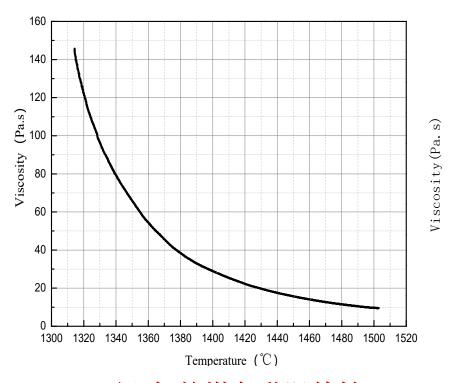
1、要求煤的适应性:

满足气化炉对原料煤的选择性以及原料煤对气流床气化的适用性。

2、要求煤的可靠性:

为保证煤运输过程中的可靠,原料煤从出矿点、发运点、到港点、

入仓点以及入炉点分别取样分析 ,确保合格煤入炉。


3、适当的灰熔点波动:

公司制定了入炉煤的质量指标:灰熔点小于1300℃。

三、运行管理

煤启用前严格分析黏温特性

Temperature(°C)

不理想的煤灰黏温特性

理想的黏温特性

酸碱度分析

酸碱比(酸性氧化物:碱性氧化物)按照理论值控制:

1.3~1.8

煤灰成分检测报告↓ Test report on coal ash composition.

样品名称。 Sample Name	华昌(化工煤)。	样品编号。 Number of Samples。	20251009	5#le.
		析结果: lysis Results:		
氧化物名称。		氧化物合量/%。		
SiO _{2.1}		38.1	25	-2
Al_2O_5 .1		15.14.	76	.1
Fe ₂ O _{3.1}		10.53.4	a a	4
CaQ.		17.75.	.1	.1
MgQ.		2.03.1	20	.1
SO ₃ .1		6.86.1	a	.1
TiO ₂₋₁		0.64.1	Ä	.1
K20.1		0.98.,	21	- 0
Na ₂ O.1		1.8.,	56	-3
P2O5.1		0.45.1	a	4
碳酸比。		0.62.1	20	- 22
i.				
i i				
a)				
.i				
a .				
a.				
a .				
a.				
以上結果仅对来				

煤灰黏温特性检测报告↓

Test Report for Coal Ash Viscosity.

样品名称。 Sample Name。	5#泉二,	样品编号。 Number of Samples	202510095#le.	
检测气氛 。 Test Atmosphere,				
	分析结:	Analysis Results.		
温度(℃)。	数度 (Pas) .	温度(℃)。	数度 (Pas)	
1482.,	1.64.1	1322.1	7.74.1	
1472.,	1.71.5	1312.1	8.80.1	
1462.1	1.86.	1302.,	10.05.1	
1452.,	1.97.,	1292.1	11.41.	
1442.1	2.19.1	1282.,	13.04.	
1432.1	2.36.1	1272.,	15.00.1	
1422.,	2.63.	1262.1	17.14.	
1412.1	2.89.,	1252.,	19.81.	
1409.1	3.00.	1242.,	23.20.1	
1402.	3.18.	1238.1	25.00.	
1392.,	3.55.1	1232.1	26.79.	
1382.1	3.93.1	1222.1	31.60.1	
1372.,	4.41.,	1215.1	35.04.1	
1362.1	4.87.1	1208.,	40.00.1	
1352.1	5,45.,	1201.,	44.80.1	
1342.,	6.17.,	39	39	
1332.	6.88.1	a	- 19	
		3		
格界 <u>程度</u> (T)。		1278.1		

三、运行管理

——制浆管理

- 1、稳定控制合适的煤浆浓度。
- 煤浆浓度过低气化效率下降,煤浆浓度过高,滚筒筛出现带浆,会造成原料煤浪费,综合考虑制浆操作及气化炉的稳定控制,我们公司煤浆浓度61.5%左右,每班间煤浆浓度波动不超过0.5%(w/w),并对大槽煤浆浓度进行严格管理。
- 2、确保煤浆的稳定性及流动性。(每周测定析出率)
- 3、控制煤浆粒度分布,及时调整磨棒配比。(每周分析颗粒分布)

时间	0:00	2:00	4:00	6:00	8:00	10: 00	12:00	14:00	16:00
煤浆浓度%	61.45	60. 92	61. 23	60.85	61. 18	61.38	61. 16	61.25	60. 98
煤浆黏度 mpa.s	858	833	794	874	833	812	851	882	912
粒度分布	8目	15目	40目	80目	200目				
粒度%	100	99.8	95.3	79.3	43.5				

-气化炉温度控制

- 1、熔渣气化炉要让熔渣能够顺利出渣口(T4>200℃,黏度<
- 15Pa.s)。运行时参照黏温特性严格控制气化炉操作温度。

(每班要求两次以上观察捞渣机粗渣的形态, 随时汇报给控制 室主操)

- 2、综合气体有效成分(CO+H2含量)及气化炉最高产气率。
- 3、定期分析渣中残炭含量(粗渣残炭<5%)。判断烧嘴雾化效 果 (每周1次)

——气化炉压力控制

根据负荷及时调整气化炉的操作压力(P)偏差0.05MPa(简单计算方法):

1、根据单烧嘴氧气流量计算: P=P₀L/L₀

其中: P一气化炉运行压力

P₀一气化炉100%负荷压力

L—运行期间单烧嘴氧气流量

L₀一气化炉100%负荷单烧嘴氧气流量

---烧嘴喷头氧气流速控制

2、喷嘴外氧流速决定气化炉的操作压力范围

测定烧嘴主要尺寸: 煤浆喷头顶间隙: H mm; 外氧环隙: d₁ mm; 煤浆通道直径: Rc mm和煤浆通道壁厚: d_c mm。根据实际运行的氧气参数: 可知总氧气流量: V₁ Nm³/h; 中心通道氧气流量 V₂ Nm³/h; 氧气温度: t ℃和气化炉操作压力: P MPa。由此可得,外通道氧气流速U 为(115~135m/S):

$$U = 0.2481 \times \frac{V_1 - V_2}{10P + 1} \times \frac{273 + t}{A \times B}$$

$$A = R_c + d_1 + 2d_c + F$$

$$B = d_1 - F \qquad F = 0.6423 \times \frac{H}{\sin\left(actg\frac{H}{d_1}\right)} \times \sin\left(0.6981 - actg\frac{H}{d_1}\right)$$

——烧嘴的使用及维修

基础管理

严格检查检修质量(焊接质量、 材质)

严格控制烧嘴尺寸(长度、间隙)按设计

运行管理

严格控制运行周期 严格控制烧嘴负荷 严格控制负荷压力匹配 严格检查运行状态

总结修正

总结阶段运行经验 分析运行问题原因 制定修改措施

- 烷嘴维修

- 1、使用后的烧嘴全面检查,评估本周期使用情况,计划下一周期使用方法。
- 2、与维修商商定本次烧嘴的维修方案。
- 3、维修后的烧嘴进行全面验收。

DA Y

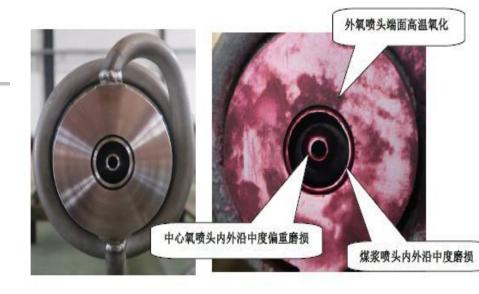


图 3 X2502-B4 烧嘴头部上炉使用前后对比图

3. 维修方案:

- a) 烧嘴经过一个较长周期后下线,根据上表中运行及维修概况,从安全角度考虑,建议烧嘴外氧喷头进行更换。
- b) 建议四台烧嘴煤浆喷头堆焊修复到设计尺寸。
- c) 建议四台烧嘴中心氧喷头堆焊维修,恢复到设计尺寸。
- d) 4 台烧嘴盘管使用 1 个长周期,从安全角度考虑,本次维修建议进行更 换处理。
- e) 其余按照拆分、清洗、酸洗、组装、压力试验、脱脂及喷漆等流程进行。
- f) 在维修过程中如有发现新的维修点, 我方会及时与贵方沟通。

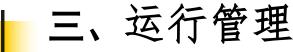
烧嘴台号	出厂标准尺寸	X2502-B4
外喷嘴喷口直径 (mm)	φ 42.8±0.05	ф 42.9
中喷嘴喷口直径 (mm)	ф33.0±0.05	ф 36.8
内喷嘴喷口直径 (mm)	φ9.4±0.05	ф 9.68
外氧环形通道宽度 (mm)	2.5±0.1	2.3-2.5
中烧嘴内缩深度*1 (mm)	1.0±0.1	1.52
煤浆环形通道宽度 (mm)	9.4±0.3	>>9.8(远远超出 9.8)
内烧嘴内缩深度*2 (mm)	4.0±0.1	5.52

表 3 X2502-B4 烧嘴尺寸

三、运行管理

——耐火砖的使用

- 1、尽可能使用低灰、低灰熔点的煤。严格稳定煤浆质量(粒度、稳定性)。
- 2、控制气化炉温度稍大于灰流动温度(50~100℃)。
- 3、合理控制烧嘴使用周期。(一般60~90天)
- 4、负荷尽可能大于设计能力的85%。压力负荷严格控制。
- 5、严格把关烧嘴喷头尺寸。
- 6、严格把关砌砖质量。
- 7、制定周期检查及更换机制。


耐火砖使用情况:

拱顶砖累计运行13,578小时(2018年更换)。

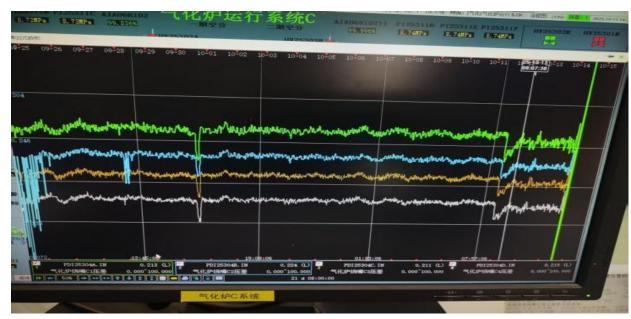
上筒体砖运行15,725小时(2019年更换)。

下筒体砖运行21,468小时(2020年更换)。

——技术改造

通过技术改造消除装置长周期稳定运行的瓶颈,不断挖潜利用 系统能量。

- 1、F高压煤浆泵:分体式活塞改成整体式,提高了钢度,避免活塞破裂问题。
- 2、F隔膜损坏问题:措施1)固定隔膜更换周期(8000小时),措施2)我们对煤浆调压阀进行改造,增加调压阀调节线性问题,同时操作时严格控制煤浆泵出口压力稳定升降,改造后25年煤浆泵隔膜没有出现计划外检修。



3、烧嘴改造烧嘴改为水夹套

运行时间:2025.7.23~2025.10.14,共运行83天;喷头整体磨损较轻微。压差比较平稳:

烧嘴压差平稳

运行83天的水 夹套烧嘴

三、运行管理

——技术改造

4、水洗塔扩能改造

25年5月系统大修期间对B/C系统水洗 塔进行扩能改造,由3600mm扩大到 4000mm。

扩大后效果: 1) 合成气出口温度没有变化, 2) 合成气雾沫夹带明显减少(变换入工段分离器外排水量明显减少3) 塔盘没有出现结垢现象。

三、运行管理

——技术改造

- 5、真空过滤机改压滤机,滤饼水含量降低到35~38%。
- 6、粗渣增加脱水机,渣含水降低到40%。

在进行的技改:

- 1、低闪蒸汽预热发电
- 2、气化扩能15%。
- 3、煤浆提浓。

手动改气动阀

粗渣脱水

三、运行的问题管理

——高钠水对气化的影响

磨煤处理新材料产生的Na+废水12t/h。(PH13.55/碱度

25220 mg/L

4点班其他分析情况

16:00

丁辛醇废水送磨煤pH: / 3-5丁

碱度 (mg/L): 2522016

新材料废水分析

Na+对气化的影响:

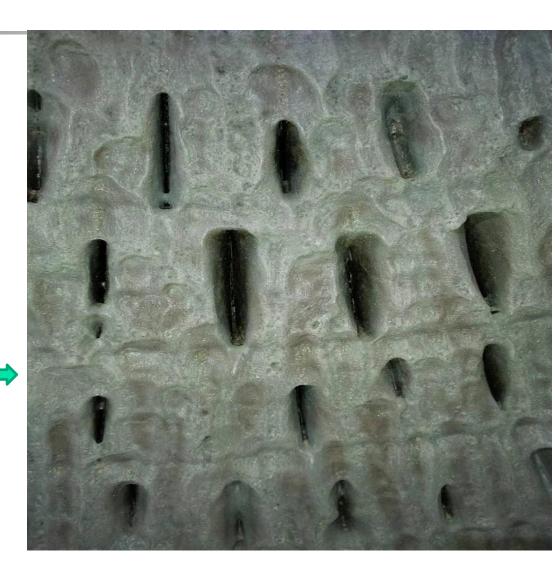
1、气化灰水碱度增加、系统设备及管道结垢严重。

8-9	3 3	4.9	70.6	1-78	942.8	1681	240.8	1851
			-4-11					
		ntu	mg/L	mg/L	mg/L	mg/L	ppm	mg/L
	PH	浊度	钙离子	氯离子	碱度	硬度	氨氮	COD

气化灰水分析:碱度较高PH值

接近9.0、硬度268mg/l

蒸发热水塔塔盘结垢


三、运行的问题管理

——高钠水对气化的影响


2、对耐火砖的影响:向 火面耐火砖形成钠腐蚀现 象,影响耐火砖的正常使 用寿命。

> 耐火砖Na腐蚀严 重

三、运行的问题管理

运行中解决办法:

1、结垢问题:缩短倒炉周期;增加外排水量;热水储罐加部分灰

水;每次停车检修对合成气管道、黑水管道进行机械清理。

2、耐火砖使用周期缩短。

效果:

- 1、没有因合成气管道及灰水管道没有影响气化炉运行或减负荷。
- 2、气化炉壁温正常没有因局部或整体超温影响气化炉运行或减负荷。

运行数据

渣残炭分析%(1)							
日期	9.2	9.9	9. 16	9. 23	9. 30		
细渣	7. 38	2.78	6. 29	7. 66	6.3		
粗渣(c炉)	2. 13	3. 54	0.08	0.07	0.18		
(a炉)	1. 56	2.63	0.1	0.98	0. 1		

气化运行数据(2)							
煤浆流量(m3/h)	气化压力 (MPa)	合成气(有 效) (KNM3/h)	有效气 (CO/H2) %	甲烷 (ppm)			
21.5*4	6.48	12	82.5	280	实际		
23*4	6.5	11	81~83		设计		

(A)系统合成气出口 手动分析(%)						
СО	C02	H2	CH4			
46-0	16-7	36.5	280 ppw			

经过公司不断实施减煤降耗措施,节能效果每年都有较大的提升,多喷嘴气化投产以来华昌多年荣获合成氨"能效领跑者"称号。

	原造气	2015年 (一期运行)	2019年 (二期运行)	2024年
吨氨煤耗 (煤kg/T氨)	1551	1366	1319	1310

对比原气化年节约原煤: (1.551-1.310)*90wt氨/y=21.6万t/年使用新型气化技术节煤效果比较明显。

四、展望未来

企业正在进行智能化改造并不断探索新能源及精细化工的研发。目前已涉足轻能源、多元醇、医药等精细化工并不断延伸产业链。为企业创建新的经济增长点打下基础。

-

三人行必有我师, 望各位专家指导