

内蒙古荣信化工 超大型水煤浆气化炉运行现状汇报

汇报人: 刘飞

内蒙古荣信化工有限公司

汇报目录

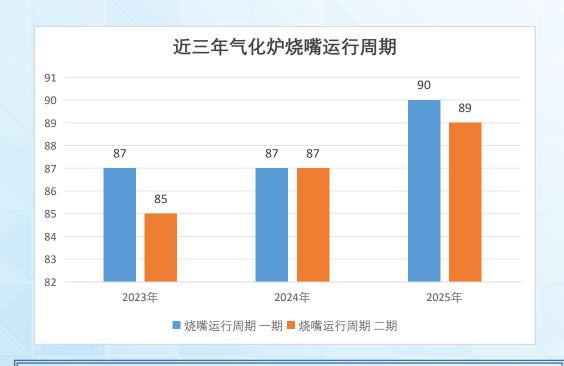
- **装置简介**
- 三 气化装置运行情况
- **三** 装置技改优化
- 四下一步计划

一、装置简介

(一) 公司背景

内蒙古荣信化工有限公司是山能集团全资子公司,地处内蒙古自治区鄂尔多斯市达拉特旗经济开发区。

■ 荣信化工现运行的共有两期装置,2014年 一期装置建成投产,2019年二期装置建成 投产,年总产能180万吨甲醇、40万吨乙二 醇。目前三期80万吨烯烃项目正在全力推 进建设,计划2026年底投料试车。


荣信化工气化共两期装置,全部采用自主知识产权的多喷嘴水煤浆气化技术

	一期装置	二期装置
气化炉数量	3台	3台
气化炉高度	24377mm	25908mm
气化炉直径	3600mm	4000mm
类型	多喷嘴	多喷嘴
操作压力	6.5Mpa	6.5Mpa
单炉处理量	3000吨级	4000吨级
磨机	三台棒磨机	四台球磨机
过滤机	真空带式	板框过滤机
单炉有效气量	140000Nm³/h	210000Nm³/h

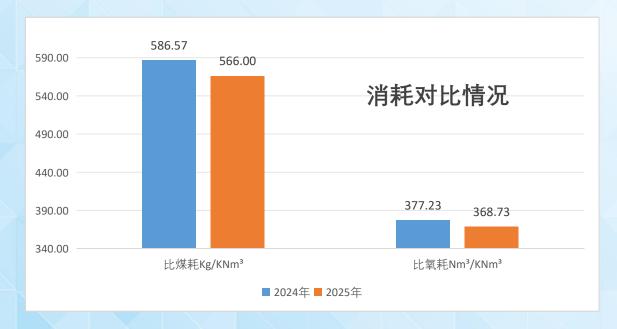
- 正常运行"两大两小",4开2备,目前运行日投煤量12000吨。
- 一期日处理煤3000吨级大型煤气化项目,于2012年1月1日开工建设,2014年7月投产运行。"十二五"期间承担两项国家"863课题",荣获2016年度国家科技进步奖二等奖,2017年度中国石油和化学工业联合会科技进步奖一等奖。
- 二期是在一期3000吨级气化炉基础上,启动实施了日处理煤4000吨级大型煤气化项目,2017年列入国家重点研发计划,2019年10月29日一次投料成功,为目前世界上处理煤吨级最大的多喷嘴对置式水煤浆气化炉,该技术荣获中国煤炭工业科学技术奖一等奖。

一二期烧嘴运行对比

2025年7月一期C气化炉运行90天,烧嘴状态良好

- 考虑煤质、前后系统等因素影响,为保持气化炉最 优运行状态,气化装置采取87-92天定期倒炉模式。
- 经过近几年的优化运行,2025年一期气化炉平均运行周期90天,二期气化炉平均运行周期89天。周期内整体运行较为平稳。

2025年7月二期G气化炉运行91天,烧嘴状态良好


1、系统整体运行状况、运行周期及负荷等

气化炉运行产能负荷										
气	单烧嘴煤	浆量m³/h	单烧嘴氧气	烧嘴外环氧流速m/s		有效气量Nm³/h			# \ .	
化炉	运行负荷	最高负荷	量Nm³/h	上限	下限	运行	设计	运行	气化炉负荷	备注
Α	27.90	30	13510	135	103	120	140000	150648	107.61%	
В	28.45	30	13520	135	103	121	140000	150759	107.69%	
E	38.15	40	18910	135	103	116	210000	210862	100.41%	
F	38.18	40	18930	135	103	118	210000	211085	100.52%	
合计			64870							总有效气

■ 气化炉产能负荷情况: 一期气化炉,设计有效气产量为140000Nm³/h, 运行有效气产量约150000Nm³/h; 二期气化炉,设计有效气产量为210000Nm³/h, 运行有效气产量210000Nm³/h; 总有效气产量72万Nm³/h, 满足两醇系统满负荷运行。

2、装置运行消耗状况

时间	甲醇耗煤kg/t	一期煤浆浓度%	二期煤浆浓度 %	比煤耗kg/kNm³	比氧耗 Nm³/kNm³	有效气耗电 kwh/KNm³
2024年	1649.25	57.68%	59.47%	586.57	377.23	30.09
2025年	1587.57	58.92%	60.17%	566.00	368.73	30.85
对比	-61.68	1.23%	0.70%	-20.57	-8.50	0.75

- 与去年对比,一期煤浆浓度提升1.23%,二期煤浆浓度提升0.7%。
- 比煤耗平均566kg/kNm³, 同比降低3.51%;
- 比氧耗平均368.73Nm³/kNm³, 同比降低 2.25%;
- 甲醇耗煤平均1587.57kg/t, 同比降低3.74%。

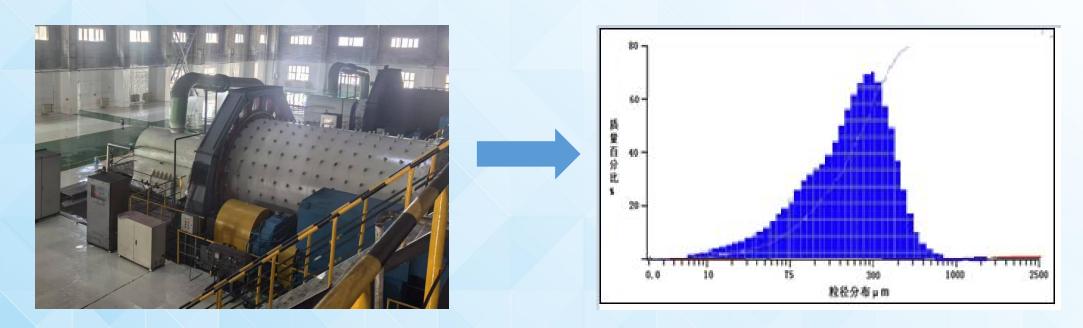
较去年相比,产品单耗下降,经济效益显著提升。

配煤总体思路

- ①安全经济效益最大化
- ②气化炉液态排渣正常
- ③降灰降温提高碳转化率
- ④延长烧嘴和耐火砖寿命

■ 公司将配煤管理作为核心管控重点,围绕入炉煤 关键指标(灰熔点、灰分、黏温特性、灰组分酸 碱比、硅铝比)建立全维度控制体系,确保各项 参数稳定在标准范围内。近一年持续推进配比优 化,成功验证并试用 3 种兼具经济性与安全性的 配煤方案,为生产稳定奠定基础。

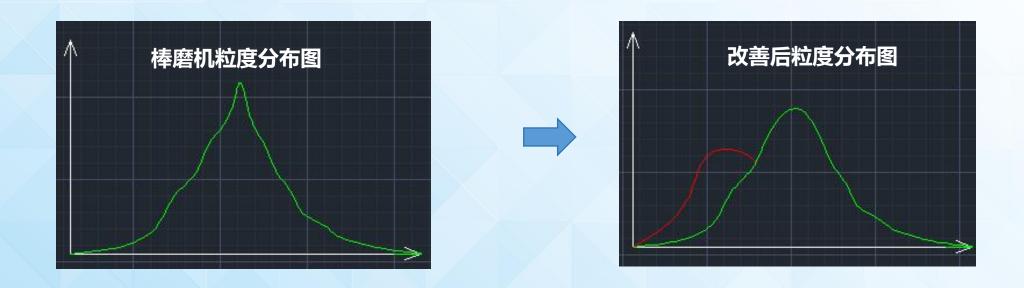
配比	评价	特点
4转: 3尔: 1石: 1色: 1双	良	该配比使用安全性高,气化炉运行稳定,成浆性能略差,发气量偏低,有效气成分约79.8%。
5转: 2黄: 2尔: 1石	优	该配比使用安全性高,气化炉运行稳定, 成浆性能好,发气量较高,有效气成分 约80.5%。
6转: 2黄: 1金精: 1石		该配比使用安全性高,气化炉运行稳定, 成浆性能好,发气量较高,有效气成分 约80.3%。



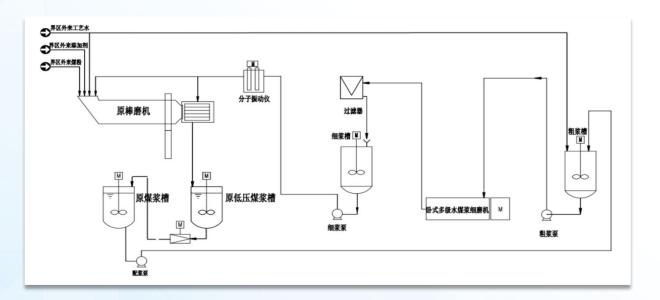
三、装置技改优化

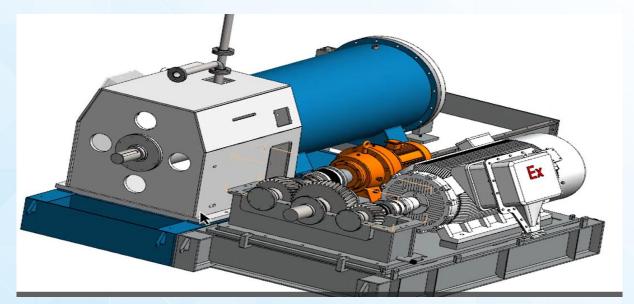
1、存在问题

我公司一期采用棒磨机,根据装置设计、原料煤等因素影响,未使用细磨前水煤浆浓度在58%左右。煤浆浓度低导致 气化效率较低,干标方有效气耗煤、耗氧偏高,不利于系统经济运行。


- 棒磨机产出的水煤浆粒度分布呈正态分布,存在一定缺陷。通俗讲"中间"颗粒过多,影响了级配关系,不能实现颗粒紧密堆积。
- 根据科学实验,良好的级配关系是颗粒之间要形成一<mark>定的级差</mark>,但现有煤浆制备采用的棒磨机正好相反,粒度分布程 正态分布,在"中间"形成了最多的粒度分布,造成了煤浆浓度偏低现象。

三、装置技改优化


2、原理分析


- 为了改善煤浆粒度级配关系,可采取干扰现有粒度分布的措施,将现在的正态分布向哑铃型分布方向转移,可以通过技术手段增加细颗粒占比。
- 当煤颗粒研磨到微米级,具有很强的<mark>润滑性</mark>提高煤浆流动性,提高了一级筛的透过率;细颗粒比例的提升同时提高 煤浆稳定性。

3、制定方案

- (1) 从气化煤浆槽内抽出一定比例的煤浆,输送 至煤浆提浓系统粗浆槽备用;
- (2) 粗浆槽内加入工艺水进行稀释,粗浆槽内有 搅拌器搅拌混合,再通过粗浆泵按比例调节输送至细 磨机进行超细研磨,使之成为平均粒径20~40µm细浆;
- (3) 细浆送入细浆槽,细浆槽内有搅拌器进行充分搅拌;
- (4) 制备好的细浆经过细浆泵,按照设定的比例 流量分别送入各棒磨机进口或出口;
- (5) 细浆在棒磨机内部与煤浆一起进行充分混合, 产出具有较高浓度的成品煤浆。

(一) 细磨机提浓装置

4、实施过程

2025年1月1日: 完成项目可行性 研究报告

2025年1月28

日: 图形审查 完成100% 2025年3月30

日:现场施工 进度完成95%

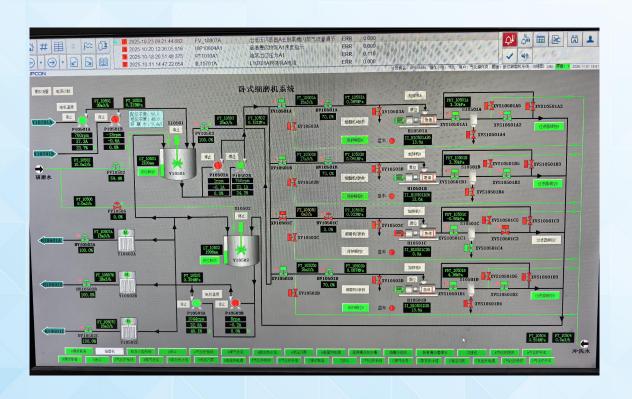
2025年4月15 日:管道吹扫、

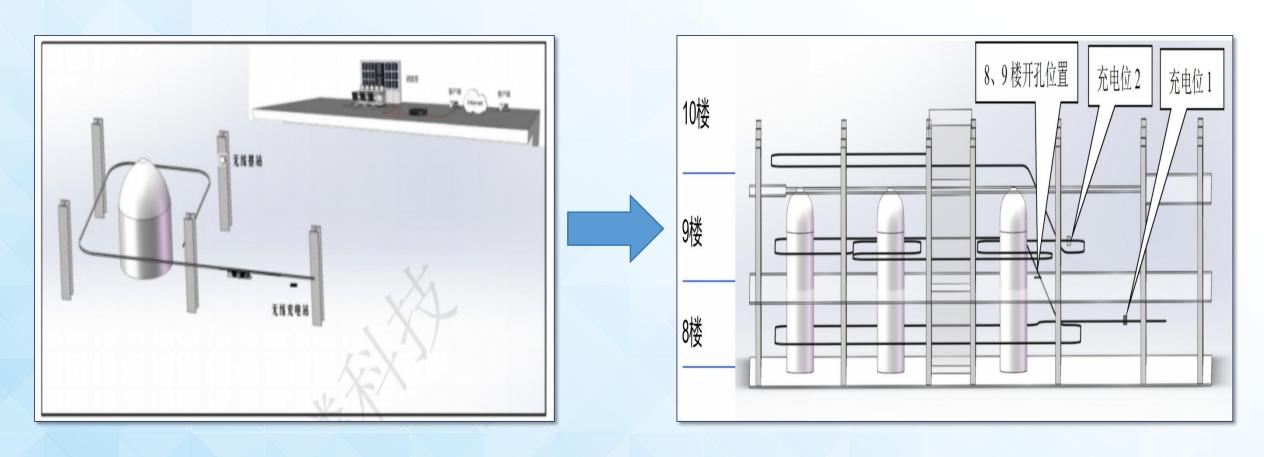
清洗、试压

2025年4月29

日: 煤浆提浓 装置投料试车

2025年6月26


日: 煤浆提浓 装置性能考核

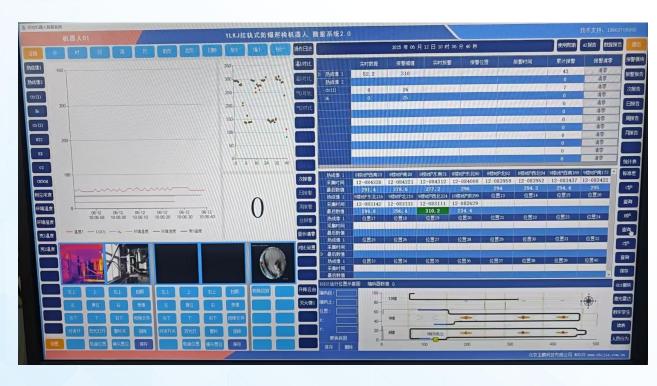

三、装置技改优化

5、效果验证

\ <u></u>							
提浓前后重要指标对比							
分项	指标	单位	性能考核前 平均值	性能考核期间 平均值	对比		
煤浆浓度	(一期)	%	58.14	60.50	2.36		
有效气含量	量 (一期)	%	80.58	81.97	1.39		
单方煤浆产 计	•	Nm³/m³	1,310.91	1333.04	22.13		
比煤耗 (总 带		kg/kNm³	563.69	554.26	-9.43		
比氧耗	(总计)	Nm³/kNm	368.79	364.65	-4.17		
吨甲醇耗炒	某 (总计)	kg/t	1617.67	1544.25	-73.41		

4月29日煤浆提浓装置投料成功,经优化调整,煤浆浓度稳步提升,6月26日—29日性能考核期间,煤浆<mark>平均浓度为60.50%</mark>,最高为61.02%,较提浓前浓度提高2.36个百分点;有效气成份增加1.39%,同时比煤耗、比氧耗和吨甲醇耗煤同步降低,达到项目预期目标。

■ 为更大化的发挥智能巡检机器人的作用,对原有机器人轨道进行延伸,使机器人可对一期八楼、九楼、十楼三台气 化炉进行巡检,完成一期气化装置高危区域机器人巡检全覆盖。



■ 升级后的挂轨式防爆智能巡检机器人,在爬坡能力及电量续航方面进行了升级,可实现0~90°连续垂直爬升,最大续航里程2.5km~5km,定位精度≤5mm,能够满足机器人巡检需求。

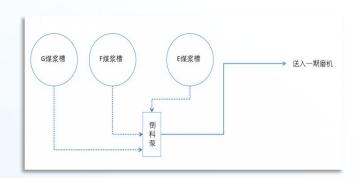
三、装置技改优化

(二) 巡检机器人再升级

■ 巡检机器人接收传感器采集的温度、气体浓度、图像、声音等多维数据,实现设备与环境状态的全面监测。具有自动巡检、数据储存及查询、远程控制功能。可基于预设算法自动对数据进行分析整理,实现气化系统异常自动 预警、故障定位诊断、运行趋势预判等。

(三) 煤浆给料泵优化

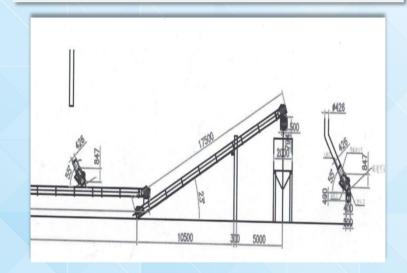
- 2024年因煤浆给料泵单向阀阀锥磨损,大颗粒"垫缸"等情况造成阀锥和密封圈损坏,导致单向阀内漏煤浆流量降低, 多次出现单对烧嘴波动的情况。
- 气化车间对原因进行分析、制定管控措施并落实,2025年未出现类似现象。


损坏煤浆给料泵阀锥

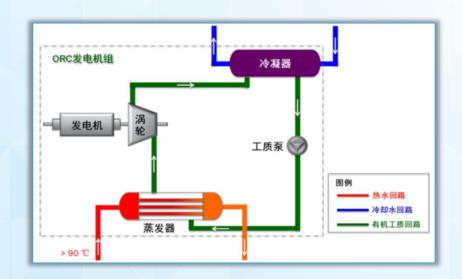
①<mark>倒料泵输送锥底煤浆</mark>:利用倒料泵将二期煤浆槽底部大颗粒、铁屑等持续输送至一期磨机,减少底部沉积,提升二期煤浆给料泵进料煤浆质量。

②定期检查一二级筛: 车间按规定每月定期对一级 筛及二级筛进行检查维修,并形成记录台账,防止 大颗粒进入煤浆槽。

③煤浆二次筛分:发现煤浆给料泵开车时最容易出现"垫缸"。所以开车前三天通过煤浆给料泵对将要使用的煤浆槽进行煤浆循环,将煤浆重新送入二级筛内再次筛分,清除煤浆槽停用期间底部大颗粒和铁屑沉积。



四、下一步计划


①二期大颗粒清洁回收除铁项目

- 二期球磨机在制浆过程中,因钢球碰撞、 摩擦产生的碎钢片随一级筛大颗粒回收 进入公司煤仓,之后又通过皮带输送返 回气化的煤浆制备工序,如此往复循环, 影响煤浆质量及备煤破碎机运行。
- 计划新增除铁器及大颗粒刮板机:可实现二期大颗粒厂房外集中回收,取消室内机动三轮车,提升厂房形象及现场安全;并且沿途增加除铁器,减少大颗粒中钢球夹带,提升备煤破碎机运行工况,同时优化煤浆质量减少杂质。

②低闪气余热发电

- 采用ORC发电技术回收低压闪蒸汽热量。 低闪蒸汽依次进入蒸发器预热器给有机工 质加热。有机工质被加热为蒸汽后推动膨 胀机转动做功发电。
- 经核算,一期可实现装机容量3500 (kW) ,二期可实现装机容量5000 (kW) 。

汇报完毕 不当之处请批评指正